Impact of mating systems on patterns of sequence polymorphism in flowering plants.
نویسندگان
چکیده
A fundamental challenge in population genetics and molecular evolution is to understand the forces shaping the patterns of genetic diversity within and among species. Among them, mating systems are thought to have important influences on molecular diversity and genome evolution. Selfing is expected to reduce effective population size, Ne, and effective recombination rates, directly leading to reduced polymorphism and increased linkage disequilibrium compared with outcrossing. Increased isolation between populations also results directly from selfing or indirectly from evolutionary changes, such as small flowers and low pollen output, leading to greater differentiation of molecular markers than under outcrossing. The lower effective recombination rate increases the likelihood of hitch-hiking, further reducing within-deme diversity of selfers and thus increasing their genetic differentiation. There are also indirect effects on molecular evolutionary processes. Low Ne reduces the efficacy of selection; in selfers, selection should thus be less efficient in removing deleterious mutations. The rarity of heterozygous sites in selfers leads to infrequent action of biased conversion towards GC, which tends to increase sequences' GC content in the most highly recombining genome regions of outcrossers. To test these predictions in plants, we used a newly developed sequence polymorphism database to investigate the effects of mating system differences on sequence polymorphism and genome evolution in a wide set of plant species. We also took into account other life-history traits, including life form (whether annual or perennial herbs, and woody perennial) and the modes of pollination and seed dispersal, which are known to affect enzyme and DNA marker polymorphism. We show that among various life-history traits, mating systems have the greatest influence on patterns of polymorphism.
منابع مشابه
New perspectives on the evolution of plant mating systems.
BACKGROUND The remarkable diversity of mating patterns and sexual systems in flowering plants has fascinated evolutionary biologists for more than a century. Enduring questions about this topic include why sexual polymorphisms have evolved independently in over 100 plant families, and why proportions of self- and cross-fertilization often vary dramatically within and among populations. Importan...
متن کاملDissecting components of flowering pattern: size effects on female fitness
Flowering synchrony is essential for plant reproductive success, especially in the case of small-sized populations of self-incompatible species. Closely related to synchrony, flowering intensity influences pollinator attraction and pollinator movements. Thus, a high flowering intensity may increase pollinator attraction but, at the same time, may also increase the probability of geitonogamous p...
متن کاملHerkogamy and Its Effects on Mating Patterns in Arabidopsis thaliana
The evolution of mating systems, which exhibit an extraordinary diversity in flowering plants, is of central interest in plant biology. Herkogamy, the spatial separation of sexual organs within flowers, is a widespread floral mechanism that is thought to be an adaptive trait reducing self-pollination in hermaphroditic plants. In contrast with previous studies of herkogamy that focused on plants...
متن کاملFlorivory increases selfing: an experimental study in the wild strawberry, Fragaria virginiana.
Florivores are antagonists that damage flowers, and have direct negative effects on flowering and pollination of the attacked plants. While florivory has mainly been studied for its consequences on seed production or siring success, little is known about its impact on mating systems. Damage to flowers can alter pollinator attraction to the plant and may therefore modify patterns of pollen trans...
متن کاملSeasonal variation in the mating system of a selfing annual with large floral displays.
BACKGROUND AND AIMS Flowering plants display considerable variation in mating system, specifically the relative frequency of cross- and self-fertilization. The majority of estimates of outcrossing rate do not account for temporal variation, particularly during the flowering season. Here, we investigated seasonal variation in mating and fertility in Incarvillea sinensis (Bignoniaceae), an annual...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 273 1604 شماره
صفحات -
تاریخ انتشار 2006